Showing posts with label Telehealth. Show all posts
Showing posts with label Telehealth. Show all posts

Thursday, December 26, 2019

Follow-up: Apple Watch 5, Afib detection, NY Times Article

The New York Times has published an article regarding the Apple Watch 5's capability to detect atrial fibrillation. The link to the article is below:

https://www.nytimes.com/2019/12/26/upshot/apple-watch-atrial-fibrillation.html?te=1&nl=personal-tech&emc=edit_ct_20191226?campaign_id=38&instance_id=14801&segment_id=19884&user_id=d7e858ffd01b131c28733046812ca088&regi_id=6759438320191226

The title and the subtitle of the article provide a good summary of what the author (Aaron E. Carroll) found:

"The Watch Is Smart, but It Can’t Replace Your Doctor
Apple has been advertising its watch’s ability to detect atrial fibrillation. The reality doesn’t quite live up to the promise."

With reference to my article, the Times article provides more detail on the trial that Apple ran to test the effectiveness of the Apple Watch's ability to detect atrial fibrillation. That provide interesting and enlightening, and clarified some of the issues I found with how the study was reported for both the procedure and the results. In addition, the author and I concur regarding the Apple Watch's extremely high reported rate of false positives for atrial fibrillation. I find this quite interesting when you consider that screening for atrial fibrillation can be as simple as taking the patient's pulse. 


Here are a few quotes from the article:


"Of the 450 participants [these are study participants where the Apple Watch had detected atrial fibrillation] who returned patches , atrial fibrillation was confirmed in 34 percent, or 153 people. 
...

Many news outlets reporting on the study mentioned a topline result: a “positive predictive value” of 84 percent. That statistic refers to the chance that someone actually has the condition if he or she gets a positive test result.

But this result wasn’t calculated from any of the numbers above. It specifically refers to the subset of patients who had an irregular pulse notification while wearing their confirmatory patch. That’s a very small minority of participants. Of the 86 who got a notification while wearing a patch, 72 had confirmed evidence of atrial fibrillation. (Dividing 72 by 86 yields 0.84, which is how you get a positive predictive value of 84 percent.)

Positive predictive values, although useful when talking to patients, are not always a good measure of a test’s effectiveness. When you test a device on a group where everyone has a disease, for instance, all positive results are correct."
...

There are positive messages from this study. There’s potential to use commercial devices to monitor and assess people outside of the clinical setting, and there’s clearly an appetite for it as well. But for now and based on these results, while there may be reasons to own an Apple Watch, using it as a widespread screen for atrial fibrillation probably isn’t one."

Tuesday, December 10, 2019

New Wearable Sensor Detects Gout and Other Medical Conditions

I just came across this article regarding a wearable sensor systems and thought that I would share it. This could be a component in a remote monitoring system. The sensor's information source is the person's sweat. "Sensor can pick up small concentrations of metabolites in sweat and provide readings over long periods of time." To turn this into a remote monitoring system, all that's required is a means to transmit the data over wireless. 

From the article:

The team’s goal is a sensor that lets doctors continuously monitor the condition of patients with illnesses such as cardiovascular disease, diabetes, and kidney disease, all of which put abnormal levels of nutrients or metabolites in the bloodstream. Patients would be better off if their physician knew more about their personal conditions and this method avoids tests that require needles and blood sampling.
“Such wearable sweat sensors could rapidly, continuously, and noninvasively capture changes in health at molecular levels,” Gao says. “They could make personalized monitoring, early diagnosis, and timely intervention possible.”

Monday, January 28, 2019

Article: Year of Telehealth

Here's an article telling us what lots of us already have learned, that telehealth is an up a coming method of providing effective and cost-effective as well as continuous medical care where ever a patient may be. Here's the link to the article: https://www.beckershospitalreview.com/telehealth/dr-toby-cosgrove-2019-will-be-the-year-of-telehealth.html

Here's a quote from the article that I think is of interest:

"[Oakland, Calif.-based Kaiser Permanente] is seeing over 50 percent of their patients distantly," Dr. Cosgrove told CNBC.

What Cosgrove isn't telling us is how telehealth is being provided. Telehealth is pretty loosely defined. It can mean that patients have access to a health care provider through chat or the telephone. Or it can mean something more sophisticated such as continuous medical-device communication and automated monitoring. One way or another telehealth is clearly on the rise and will likely become the standard for providing care.

Tuesday, January 22, 2019

Training a Damaged Brain

One of my medically related interests is a neurological disorder know as CTE, Chronic Traumatic Encephalopathy. I became aware of this disorder largely through an exceptional documentary on PBS Frontline, League of Denial. It's a history of the discovery of this disorder as found in NFL players and the lengths the NFL had gone to deny that this disorder is common among those in NFL and football players in general. If you're not familiar with CTE and its connection to playing tackle football, I strongly suggest that you see this documentary. And consider reading and watching much of the source material. The work in this area continues to progress with more and more sufferers of CTE being discovered among those who were NFL players. Many of the changes in the rules and football equipment has been driven by research on CTE and the accumulating findings.

CTE is not the only type of brain damage that afflicts older NFL players. CTE is particularly troubling because its severity on suffer's cognitive and emotional functioning. There are brain damage related disorders are not at the level of severity as CTE that plague older football players.

A few days ago I ran across a treatment system that trains damaged brains. Many of the former football players, particularly those from the hard-hitting NFL, live in a kind mental haze, as if they were living in a dream state. They're unable to concentrate or focus for even a short period of time on anything without mentally drifting from the task at hand. This training system has been shown to significantly increase lift patient's emotions and apparently, lift them out of the mental hazy they have been living with for years. Here's a link to video and the article: https://denver.cbslocal.com/2016/02/08/former-broncos-seek-concussion-relief-through-neurofeedback/

The treatment system is called neuro-feedback. Because it appears to run on a computer, it would seem that it would be something that a patient could use on their own home computer.

Now, one of the reason's I mention this is because one of the people mentioned in the article and who is in the video is Jon Keyworth (and his wife). I mention that because Jon and I were childhood friends. He and I grew up in the same neighborhood. Jon is a few years older than I am. And we went to different high schools and different universities. Our paths diverged, but I haven't forgotten Jon. I followed his career from a distance and I've been in contact with people who have known him over the years.

Jon was an exceptional athlete. (Interestingly enough, the only person I've ever know who had athletic skills at Jon's level is my younger brother.) Me? I'm no athlete. I kept trying and continue to ride a road racing bicycle at respectable speeds, low to mid 20s MPH over reasonable distances, but in truth my athletic skills are at the opposite end of the bell curve from Jon. I'm not ashamed to say that I'm jealous. I always wondered what it would be like to have athletic skills at his level. (I bet there are others out there who have wondered the same thing.)

Let me go through Jon's success as a football player. Jon played for the Denver Broncos as number 32 for his entire NFL career from 1974 to 1980. (Seven seasons.) He was fullback meaning that his primary job was as a blocking back, nevertheless Jon is listed the 10th best all time rusher for the Broncos. He played in Super Bowl 12. (Not only can I not imagine what it's like to play in an NFL game, I certainly can't imagine what it would be like to play in the Super Bowl. I haven't had anything close to that kind of an experience. I guess it must have been nice, but that's something I'll never know.)

One more thing I want emphasize. Jon was, is and will be a much nicer, kinder person than I ever have been or will be. Forget about any stereotypes that you might hold about NFL players, particularly the stars of the game. At least as it applies to Jon. Jon is someone filled with warmth, kindness and generosity. And when I ran across the article and video above that talked about Jon's plight and his way back, I felt that I needed to share this treatment as well a little bit of Jon's story. It could be that these players and the treatment they're undergoing may have an impact on a much wider group, maybe people suffering from dementia, especially early dementia. Maybe it can be slowed or possibly reversed. But these former players may be blazing a trail for the rest of us.

So, thank you, Jon. And your wife. And thanks to the people who have developed the treatment and continue to refine it. 

Wednesday, September 12, 2018

Apple Watch 4, Preview of Medical-Monitoring Features

Here's an article regarding the Apple Watch 4 and what are suppose to be built in medical monitoring features.

Here's the link: https://www.mobihealthnews.com/content/apple-watch-series-4-will-have-fda-cleared-ecg-fall-detection?mkt_tok=eyJpIjoiTkRVMk0yVmxNamsyWkRneiIsInQiOiJjWXRoaVpENmhJYlBRNFlzVVBYZ3hrc0VEVFdsYmNLUG1FQUIrQmcyMnVHMTRwSnBORDh6cW1Da1kzbjJqS2JxbHcydjRuTk0zaG5qRzBvMFR1MmdiMmZyNGhyXC9SZmYyYkduaSs5R0tyRG85TXkrMHVxTnFFYXFrVE5jWHpIRWwifQ%3D%3D

Here's the list of new medically-related features:


  1. ECG (30 second rhythm "strip")
  2. A-Fib detection (of course, if you're paying attention and you know the symptoms, you'll probably know sooner than the watch.)
  3. Fall detection (as in when the person falls, the watch detects that it has occurred)
All information is sent back to Apple Health Records where all this information be accessible to a physician/cardiologist.

Apple has received FDA approval, according to the article. 

I'm not going to comment until I've had a little more time to study the Apple Watch 4 except to say, if you can detect A-Fib, then why not V-Fib? V-Fib is much more life threatening. Also too, if you've got a 30 second rhythm snap shot, you can do a lot with that. 

I'll touch on these and other questions regarding the Apple Watch 4 and Apple's effort to product a remote medical monitoring device and medical monitoring system later. 


Monday, August 6, 2018

FCC approves telemedicine pilot for veterans, low-income, rural Americans

I'm actually surprised that this trial had not been approved earlier. Here is the announcement from the FCC.

 This is a link to an article that provide more detail on this program.

https://www.mobihealthnews.com/content/fcc-approves-telemedicine-pilot-veterans-low-income-
rural-americans?mkt_tok=eyJpIjoiT1dJNVl6UmxaVFExT1RkaCIsInQiOiJrb1B5Y0drbTRBMzRoMHFcLzBpUlpCTVljT1lBUGhhcUNCazA2RndKOW8zXC94dTFVSU5ua1VYY1NzeHBQazRsYW5hMkdsaTRETndXb01CTDZjN1Zva2VRYmRIUElic0FCc21BYVowSWdFTGVtTSt1Y2kxTXFGSHRuYlNCcitSRU5TIn0%3D

Since this is a pilot program, data should be collected about it's effectiveness. This is something that those who are interested in medical remote monitoring and remote patient management should be interested in following. I know I will.




Tuesday, July 24, 2018

Adhesives: Part of the Future for the Remote Monitoring Sensors?

I just ran across this article a few minutes ago. It's a serious article published in Machine Design. Here's the link: http://www.machinedesign.com/mechanical/adhesives-enabling-future-wearable-medical-devices?NL=MD-005&Issue=MD-005_20180724_MD-005_524&sfvc4enews=42&cl=article_1_b&utm_rid=CPG05000003255032&utm_campaign=18775&utm_medium=email&elq2=5b76b40ea8f44d76b2b883c5c09f23fe

It's an extremely readable article and what's being described has in my opinion real applicability in the future of medical sensors. Adhesive, "band-aid" or strip sensors development applies to both the fitness set as well as to remotely monitored patients.

Transmitting data to monitoring systems and people will likely require an intermediate device such as a smart phone. I suspect that the real issues and hurdles will likely revolve around digital communications issues and standardization. Having worked most of my life in the communications domain, communications issues can be successfully overcome.

Here are a few quotes from the article:

Device manufacturers are taking steps to create medical devices that are smaller, lighter, and less invasive. Whether they’re adhering device components together or sticking a device to skin, adhesives are uniquely bonded to a device’s success.

Both consumers and patients want wearable devices to be smaller, lighter and less cumbersome to use for seamless integration into their everyday lives. The design process can get challenging when devices must maintain accurate sensing capabilities, but also reduce friction to ensure precise data collection. Adhesives can help to keep friction to a minimum by being breathable and maintaining a low profile. In addition, options with flex electronics, as well as addressing battery implications and electromagnetic interference, provide opportunities for advancement.

Adhesive wear time is a crucial consideration when designing a wearable device, impacting overall resilience and durability, as well as how often the user will need to change their device. 

______________

I should mention that by the looks of things, it appears to me that 3M maybe behind the article. Nevertheless, I think that considering adhesives in the research, design and development process of a bio-sensor is worth your time. 


Sunday, July 22, 2018

15 Game-Changing Wireless Devices to Improve Patient Care

I happened across this slide show today and decided to share it.

https://www.medscape.com/features/slideshow/wireless-devices#17

Remote monitoring has by implication another side to it: remote patient management. The remote monitoring side of these devices seem to be on a strong, positive path of development, but I'm not seeing the same level of development on the remote patient management side. That piece of seems to be lagging and probably for good reason: it's the more difficult. And I can say that from experience working in the area. In addition, it will likely require further development of supporting automation, that is, artificial intelligence or expert systems.


Article: Remote Monitoring of Heart Failure Patients

Although this article was published in 2013, it's findings are still applicable today. Moreover, there is applicability of this system remote monitoring and remote patient management to patients with other chronic conditions other than heart failure. 

I have experience with engineering methods to support remote monitoring and treatment of heart failure patients and this article is an extensive review many of the systems that were and would be coming available in 2013 and later.

Here is the link: Remote Monitoring of Heart Failure Patients by Arvind Bhimaraj, M.D., M.P.H. I recommend this article if you have an interest in many of the details of remote monitoring and remote patient management.

Heart Failure


Heart failure is a chronic disorder and requires continual monitoring and management. The management of heart failure patients remotely can serve as a model for managing patients with other chronic disorders such as diabetes or COPD.

Article Abstract (from the article)

Heart failure continues to be a major burden on our health care system. As the number of patients with heart failure increases, the cost of hospitalization alone is contributing significantly to the overall cost of this disease. Readmission rate and hospital length of stay are emerging as quality markers of heart failure care along with reimbursement policies that force hospitals to optimize these outcomes. Apart from maintaining quality assurance, the disease process of heart failure per-se requires demanding and close attention to vitals, diet, and medication compliance to prevent acute decompensation episodes. Remote patient monitoring is morphing into a key disease management strategy to optimize care for heart failure. Innovative implantable technologies to monitor intracardiac hemodynamics also are evolving, which potentially could offer better and substantial parameters to monitor.

My Analysis

With the advent of smartphones and increasingly sophisticated, smaller and lower power bio-sensors, remote monitoring and remote patient management of all types of chronic conditions should be on the rise. Furthermore, the rise and acceptance of computerize expert medical systems (artificial intelligence), should make remote monitoring and remote patient management a first choice. Not only will this lower costs, but as we have seen it: increases patient satisfaction and mobility, enabling a patient to spend time traveling and enjoying the life that remains.

One more thing ... and I have to add this as a point of pride, a quote from the article:

Also, advancements in implantable wireless technology seen with the pulmonary capillary pressure monitoring device CardioMEMS® (CardioMEMS, Inc., Atlanta, GA) and the left atrial pressure monitor HeartPOD System (St. Jude Medical, Inc., St. Paul, MN) or Promote® LAP System (St. Jude Medical, Inc., St. Paul, MN) bring us closer to finding the holy grail of home monitoring systems. (my emphasis)

I had a part in SJM's LAP project. I was working at SJM when this project was in the state of early patient trial. The project manager needed assistance with issues related to and testing of operation of the user interface including the how the computerize system would interact with patients to collect necessary data and provide the patient with directions on what to do to manage their current condition -- mostly, taking medication and performing certain activities. I provided that assistance, design direction and usability testing for this early stage product. Although I haven't seen this system in it's commercial form, I suspect that a lot of what I did was included in the commercial product. The "holy grail" comment is personally gratifying. And I should mention that my experience with the LAP system was one of this things that lead me to starting and continuing with this blog.


Saturday, July 26, 2014

How This Blog Got Going: MRI Safe and Conditional Pacemakers, Reprise

I have decided to return to the thing that I was working on when I started this blog ... an MRI conditional pacemaker. Specifically, an MRI conditional pacemaker for St. Jude Medical. At the time I was Lead Human Engineering Clinical Systems Engineer on this project. Before I go any further I would like to distinguish between MRI conditional and MRI safe devices. It is important to distinguish between the two.

MRI Conditional v. MRI Safe

Having an MRI safe implanted cardiac device is the ideal situation. If the cardiac device is MRI safe, it means that a device patient can be "popped" into an MRI without any changes to the device. For the patient it's just like the person does not have an implanted device. The only difference is that the resulting imagery from the MRI around the device may not be as good if the person did not have an implanted device. 

An MRI conditional device presents some significant procedural challenges to all those involved. If a person has an MRI conditional device, certain conditions must be met before the device patient is allowed to enter the MRI. When I was working at St. Jude Medical, changes in the settings that operate the device are required before the patient enters the MRI. Once scanning is complete, the settings need to be changed back to their normal, operational settings.

As of publication of this article, only one medical device company has a commercially available MRI safe pacemaker, Biotronik. St. Jude Medical and Medtronic have commercially available MRI conditional devices. 

When I was work at St. Jude, the only cardiac device being engineered to permit patients to have MRI scans were pacemakers. At the time ICDs and CRTs were not considered for MRI compatibility. However, apparently, Biotronik has developed an MRI conditional ICD that is commercially available ... at least in Europe.

There are other issues regarding MRI compatibility such as whether there are limits on the area that can be scanned a cardiac device patient ... something other than a full body scan. The allowable limits on how much can be scanned are continually in flux. But this particularly issue does not have anything to with the story I want to tell.

My Experience with the MRI Conditional Project

The St. Jude Medical MRI conditional pacemaker was engineered to enable patients to undergo an MRI scan. To insure that pacemaker patients would not be harmed by the scan required that the operating settings on the pacemaker be adjusted. (To make a long story short ... a change in the setting needed to make sure that the sensing lead to heart be turned off. The pacemaker could be changed to constant pace or turned off entirely if the patient is not pacemaker dependent ... as most pacemaker patients are.)

So the major problem in this entire issue was in regards to how to change the settings on the device? Who would do it, how would it be done, what would the settings be? Essentially three basic approaches were considered:
  1. Have the patient's cardiac physician or cardiac nurse go to the MRI center, lugging their device programmer with them, change the settings on the patient's device to those that are MRI compatible, wait for the scan to complete, reset the settings to normal and examine the patient to insure that the patient is OK.
  2. Have the settings changed remotely. The patient is at the MRI center, the cardiac professional is in the office, at the hospital or at home. This is known as "remote programming."  At the time this was something that the FDA did not allow. Using remote programming, the patient's device communicates wireless to a pacemaker communicator located at the MRI center. The cardiac professional sees a 30 second rhythm strip before setting the patient's device to the MRI settings and sees another 30 second rhythm strip after the changes have been made. (Just like an onsite cardiac professional would do.) The patient undergoes the scan. During that time, the professional can perform other tasks. Once the scan is complete, the cardiac profession changes the pacemaker settings back to normal and sees the before and after rhythm strips. 
  3. The pacemaker is programmed with two settings by the cardiac professional using the programmer. The first set of settings define the normal operation of the pacemaker. The second set are the MRI settings: that is, the settings of the pacemaker when the patient undergoes an MRI scan.  When the pacemaker patient goes to the MRI center, the MRI tech takes a wand (that's best way I can describe it.) and changes the settings from normal to MRI. Once the patient completes the MRI scan, the MRI tech uses the wand to change the patient's setting back to normal. 
I became quickly apparent that cardiac professionals had no interest in option 1. As it turned out St. Jude Medical chose the third approach. 

When the third approach was described, I had numerous objections ... mostly related to the device that would change the setting on the pacemaker. Thankfully, there have been substantial changes and upgrades made to the wand. However, I wanted to purse option 2, remote programming. And the desire to purse option 2 inspired me to start this blog ... hence the title Medical Monitoring & Remote Programming.

Wherefore Remote Programming?

Most physicians showed some hesitancy when it came to adopting remote programming. They saw it as unproven ... and they were right, it was (and so far as I know still is) unproven and still not acceptable to the FDA. However, many if not most were intrigued by the idea and thought that the technology should be pursued. Many clearly saw the potential value of the technology, the value of being able to monitor patients remotely with the potential ability to change cardiac device settings without the patient being in the office could be a revolution in patient care ... not only for people with chronic conditions like heart problems, diabetes or neurological problems that involve implanted devices, but potentially everyone. And it need not involve the need for implanted or wearable devices. We'll explore this in later postings.



Friday, July 1, 2011

Some Articles of Interest Before the 4th

I came across two long investigative articles that I thought could be of interest those in the medical products field. One article is from the National Journal and the other from Pro Publica. Here are the links to the articles with short clips.


Medical journals have long had to wrestle with the possibility that financial bias influences the work they publish, but if the growing controversy over Medtronic's Infuse spinal product is any indication, they may not be doing enough.

Comment: This is an area that should concern everyone in the field of medical devices and device research. I am very aware that companies fund a lot of empirical and academic research much of which is published in peer-reviewed and respected medical journals. On the face of it, nothing wrong with that. When I was a graduate student, some of my research was funded the research and development division of a well-known (non-medical) company. The funding had absolutely no bearing of the design of the research program, the data collected or interpretation of the data. The concern expressed in this article is whether data maybe suppressed or not reported in an unbiased fashion particularly when it comes to reporting data related to the risks. You be the judge.


Critics of last year’s health care law pounced on what seemed like a damning new survey, but the details were a lot murkier than the headlines.

Comment: This is an interesting article well worth your time to read.


Finally, here's a short article that just came across indicating how rural health may well be the driver behind telemedicine. Here's the link to the article:


Rural Healthcare to Drive the Global Telemedicine Industry

...[C]ountries face various problems in the provision of medical services and health care, including funds, expertise, and resources. To meet this challenge, the governments and private health care providers are making use of existing resources and the benefits of modern technology. Besides, with limited medical expertise and resources, telecommunication services have the potential to provide a solution to some of these problems. As telemedicine has the potential to improve both the quality and the access to health care regardless of the geography; the rural market is driving the incessant growth of the telemedicine market.

Tuesday, June 28, 2011

Hacking Grandpa's ICD: Why do it?

Background

I am part of another professional discussion group with an interest in Medical Data, System and Device security.  One of the topics was whether medical devices are a likely target for cyber-attacks.  I made a contribution to the discussion and stated that I believed that although unlikely, I thought that medical devices will eventually be targets of cyber-attacks.  But putting data security measures into medical devices is at odds with the directions that the medical device industry wants to take its product lines.  The trends are for smaller and less power-hungry devices.  Adding data security measures could increase power demands, increase battery sizes and thus increase device size.  Nevertheless, I believe that starting the process of putting data security measures into the medical devices has merit.

I received a well-reasoned response that hacking medical devices was highly unlikely and research funding on security measures for medical devices would be money best spent elsewhere.  That response started a thought process to develop a threat scenario to address his points.

I reviewed my earlier article on "hacking medical devices," http://medicalremoteprogramming.blogspot.com/2010/04/how-to-hack-grandpas-icd-reprise.html.  I revisited the paragraph in my regarding the motivation for hacking a medical device, an extortion scheme. 

When I wrote that article, I did not have any particular scheme in mind.  It was speculation based more on current trends.  Furthermore, I did not other motivations as particularly viable - data theft, not much money or value in stealing someone's implant data or killing a specific person, there are easier ways to do this although it might make a good murder mystery.

I did come up with a scenario, and when I did, it was chilling.





The Threat Scenario

First, as I had previously suggested, the motivation for hacking medical devices would be extortion.  The target of the extortion would be the medical device companies.  Before getting into the specifics of the extortion scenario requires that you understand some of the technologies and devices involved.

The wireless communications of interest occurs between a "base station" and a wirelessly enabled implanted device as shown in the figure below.

The base station need not be at a permanent location, but could be a mobile device (such as with the Biotronik Home Monitoring system).  The base station in turn communicates with a large enterprise server system operated by the medical device company.


The two systems communicate use wireless or radio communication.  For example, St. Jude Medical uses the MICS band - a band designed by the FCC for medical devices in the range of 400Mhz.  To insure that battery usage for communications is minimal, the maximum effective range between is stated as 3 meters.  (However, I have seen a clear connection established at greater 3 meters.)  


In general, the implant sends telemetry data collected it has collected to the base station.  The base station sends operating parameters to the implant.  Changing the operating parameters of the medical device is know as reprogramming the device and define how the implant operates and the way the implant exerts control over the organ to which it is connected.


Device Dialogue of Interest to Hackers

As you probably have guessed, the dialogue of interest to those with criminal intent is the one between the base station and the device.  The "trick" is to build a device that looks like a legitimate base station to the medical device.  This means that the bogus device will have to authenticate itself with the medical device, transmit and receive signals that the device can interpret.  In an earlier article (http://medicalremoteprogramming.blogspot.com/2010/03/how-to-hack-grandpas-icd.html), I discussed an IEEE article (http://uwnews.org/relatedcontent/2008/March/rc_parentID40358_thisID40398.pdf**) where the authors had constructed a device that performed a successful spoofing attack on a wireless Medtronic ICD. So, based on the article, we know it can be done.  However, based on the IEEE article, we know that it was done at distance of 5 cm.  This was aptly pointed out in a comment on my "How to Hack Grandpa's ICD" article.


Could a Spoofing/Reprogramming Attack be Successful from Greater than 5 cm or Greater than 3 meters?


I believe the answer to the question posed above is "yes."  Consider the following lines of reasoning ...
  1. As I had mentioned earlier, I know that base stations and medical devices communicate at distances of 3 meters and can communicates greater distances.  The limitation is power.  Another limitation is the quality of the antenna in the base station.  The communication distance could be increased with improvements in the antenna and received signal amplification. 
  2. The spoofing/reprogramming attack device could be constructed to transmit at significantly greater power levels than current base station.  (Remember, this is something built by a criminal enterprise.  They need not abide by rules set by the FCC.)  Furthermore, a limited number, maybe as few as one or two, of these systems need be constructed.  I shall explain why later.
  3. A base station can be reverse-engineered.  Base stations can be easily obtained by a variety of means.  Medical devices can be stolen from hospitals.  Documentation about the communication between the medical device and the base station can be obtained.
Thus, I believe the possibility exists that a device that emulates a base station and could successfully perform a spoof/reprogramming attack from a significant distance from the target is possible.  The question is, what is to be gained from such an attack?


Attack Motivations


Extortion: Earlier I mentioned that in an other article, I suggested that the motivation would be extortion: money, and lots of it.  I think the demands would likely be in the millions of US dollars.

In this scenario, the criminal organization would contact the medical device companies and threaten to attack their medical device patients.  The criminal organization might send device designs to substantiate their claims of the ability to injure or kill device patients and/or send the targeted company with news reports sudden unexplained changes in medical devices that have caused injuries or deaths in device patients.


Market Manipulation: Another strategy would be as a means to manipulate the stock prices of medical device companies - through short-selling the stock.  In this scenario the criminal organization will create a few base station spoofing/reprogramming systems. Market manipulation such as placing the value of the stock at risk could be a part of the extortion scheme.




Book of Interest: Hacking Wall Street: Attacks And Countermeasures (Volume 2)


In another article I'll discuss how someone might undertake an attack.




** Halperin, D, Heydt-Benjamin, T., Ransford, B., Clark, S., Defend, B., Morgan, W., Fu, K., Kohno, T., Maisel, W. Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses, IEEE Symposium on Security and Privacy, 2008, pp 1-14.

Friday, April 23, 2010

Medical Implant Issues: Part 1, A True Story

When I started this article, I thought I could place it into a single posting.  However, having written just the first section, noted it's length and how much more there was to write.  Thus, I decided to turn this into a serialized publication just as I am doing with HE-75.  Thus, here is Part 1 ...
 

Part 1: Background Story

Before I dive into the technical details of this issue, I want to tell a true story from my own experience.  It involves a friend of mine.  (I need to be vague regarding the person's identity including gender and how I came to know this person.  As you read this, you'll understand.

My friend was incredibly intelligent (e. g., the best applied statistician I have ever known) and physically attractive, and diagnosed as a paranoid schizophrenic.  In the early 1990's, my friend underwent back surgery.  To my amazement, my friend claimed that the surgeon had placed a "chip," small processor into the person's spinal cord.  My friend said that the chip could be activated by people with controls that looked like garage door openers.  When activated, the chip would cause my friend to have a sudden, overwhelming desire to have sexual relations with the person who had activated the chip.  My friend called this chip a "tutu."

At the time I had been part of the cutting-edge technology community to know that such a chip was absurd.  And I told my friend that this chip did not exist. My information was not well received by my friend who was convinced of the reality of this chip.

I tell this story because at the time my friend informed me of the "tutu," the idea of embedding a chip in a human being and activate it using wireless means was patently absurd.  Embedding programmable chips with wireless communications less than a decade and a half later is no longer considered absurd, but real.  And for some people, frightening with religious overtones.  Consider what the Georgia state legislature just passed and you'll understand what I mean.  Here's a link to that article: Georgia Senate Makes "Mark of the Beast Illegal."


The reaction from the Georgia Senate makes my paranoid-schizophrenic friend's story seem plausible.  Interestingly enough and I did not realize it at the time (but I do now), that was my introduction to wireless, medical remote programming.  As I said, my friend was extremely intelligent and as it turned out more creative and prescient than I realized at the time.  Turns out that today a device embedded in the spinal cord with the ability to trigger sexual experience is real.  And the ability to embed microprocessors and controls in people with the capability of wireless communication and medical management is also real.


I tell you that story not to make light of people's stories and fears, but as a "sideways" introduction to the technical topic of dealing with multiple, embedded medical monitoring and remote programming systems.  And to suggest that people may have real fears and concerns regarding the capabilities that technologists like myself often overlook.  In this series I discuss real and imagined fears as well as the technical problems with multiple, implanted devices.




Part 2: Multiple, Implanted Wireless Communicating Devices






Books sold by Amazon that might be of interest in this series

New Frontiers in Medical Device Technology

MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications
 

Monday, April 19, 2010

Market Research Report Available: Remote & Wireless Patient Monitoring Markets

A new market research report has just been made available that discusses the market and investment potential of remote and wireless monitoring of patients.  I do not endorse this study or suggest it's purchase.  I am making it's existence known.

Here's a list of some of disorders covered by the study:
  • Asthma
  • COPD
  • CHF
  • CHD 
  • Diabetes 
Here are a few quotes from the press release:


Patient monitoring systems are emerging in response to increased healthcare needs of an aging population, new wireless technologies, better video and monitoring technologies, decreasing healthcare resources, an emphasis on reducing hospital days, and proven cost-effectiveness.
Of these new high-tech patient monitoring systems, nearly all focus on some form of wireless or remote patient monitoring. ...
...  the following companies are profiled in detail in this report:
  • Abbott Laboratories, Inc
  • Aerotel Medical Systems
  • GE Healthcare
  • Honeywell HomMed LLC
  • Intel Corporation
  • Philips Medical Systems
  • Roche Diagnostics Corporation

Here's the link to the press release and links to purchasing this study: http://www.marketresearch.com/product/display.asp?productid=2645944&g=1

 

Saturday, April 17, 2010

Article: Initiation of a Telemonitoring Study of Heart Failure, COPD and Diabetes Patients

A study will be performed by researchers from Case Western Reserve University and Cleveland State University with patients suffering from heart failure, diabetes and COPD.  The objective of the study will be to determine how effective remote monitoring is with maintaining the health of these patients and with keeping them out of the hospital.

Here's a link to a report on this study: http://www.physorg.com/news190634143.html 

Additional Resources

COPD 

 The Complete Guide to Understanding and Living with COPD: From A COPDer's Perspective 

COPD For Dummies 

Diabetes

Diabetes For Dummies (For Dummies (Health & Fitness)) 

Tell Me What to Eat If I Have Diabetes: Nutrition You Can Live With 

The Official Pocket Guide to Diabetic Exchanges 

Heart Failure

The Cleveland Clinic Guide to Heart Failure (Cleveland Clinic Guides)


Manual of Heart Failure Management

Friday, April 16, 2010

Medtronic Remote Monitoring Study: CONNECT

At the American College of Cardiology 59th annual conference George H. Crossley, MD presented evidence that cardiac patient from remote monitoring (one scheduled in-office visit per year with remote monitoring) verses standard in-office care (four in-office visits per year) cuts the time between the time a cardiac or device related event occurs and when a treatment decision is made.

The title of the study: "The clinical evaluation of the remote notification to reduce time to clinical decision (CONNECT) Trial: The value of remote monitoring."

I present a summary of the method and the results of the study gleaned from the slides presented by Dr. Crossley at the conference.

Hypothesis

Tested hypothesis: Remote monitoring with automatic clinician notifications reduces the time from a cardiac or device event to a clinical decision.

Additionally investigated were rates utilization of the health care system including hospitalization and between treatment groups.

Method

Study participants:  1997 newly implanted CRT-D and DR-ICD patients from 136 US centers were randomly assigned to one of two groups. The first group had 1014 patients assigned to the remotely monitored group and the second had 983 patients assigned to the standard in-office care group. The patients were reasonably well matched for age and gender characteristics.  (A procedure similar to the Biotronik TRUST studies.)

The patients were followed for 12 months.  (On first reading, I found the the time relatively short in that I would not expect enough differentiating events would occur during that time.  However, on further reading, I believe my first impression was incorrect.)

Findings

Time from Event to Clinical Decision

The median time (used nonparametric inferential statistics for the analysis) from the cardiac or device event to clinical decision was 4.6 days in the remote group and 22 days in the in office group. This difference was significant.  The remote group involved 172 patient while the in-office group involved 145 patients.

The cardiac/device events included:
  • Atrial Tachycardia/Fibrillation (AT/AF) for 12 hours or more
  • Fast Ventricular rate. Of at least 120 beats per minute during at least a 6 hour AT/AFT event
  • At least two shocks delivered in an episode
  • Lead impedance out of range
  • All therapies in a specific zone were exhausted for an episode
  • Ventricular Fibrillation detection/therapy off
  • Low battery
Total number of events Remote group: 575 and In-office group: 391.  The slides show the breakdowns.

Office Visits

The number of office visits per patient reported are shown below.
                        Scheduled     Unscheduled      All office
Remote group:     1.68              2.24              3.92
In-office group:    4.33              1.94              6.27

The TRUST studies showed a slight increase of more unscheduled visits for the remote group. However, given the nature of the study and that remotely monitored patients would receive only one in-office visit per year, it's remarkable how similar the numbers between the two groups are.

Utilization of the Health Care System

Number of incidents where patients used the health care system show virtually no difference, hospitalization or emergency room. 

However, a remarkable difference was the significant difference in length of stay when there was a hospitalization. The remote group had a mean hospital stay of 3.3 days while the in-office group was 4.0 days with an estimated savings per hospitalization of $1659.

Conclusion

The CONNECT and (Biotronik) TRUST studies show clear benefits from a number of standpoints for remote monitoring.  In addition, the CONNECT study showed clear cost and hospital resource utilization benefits from remote monitoring in that hospitalized patients had shorter stays indicating that they were in better shape than patients in the in-office group when admitted to the hospital.  Quick responses seem to lead to better outcomes as well as cost reductions.


Friday, April 9, 2010

Article: Wireless Remote Monitoring Prevents Complications of Chronic Diseases

An interesting article about the benefits of remote monitoring in the care of patients with chronic diseases from the Press of Atlantic City, 8 March 2010.  Here's the link to the article:  http://www.pressofatlanticcity.com/life/monday_health/article_1333e585-e3a6-5ba8-a411-75530f6b63cf.html

Quotes from the article:
Improving management
By early 2012, Americans will use about 15 million wireless health-monitoring devices, according to a forecast from ABI Research, which tracks mobile-technology trends. The mobile health market is projected to more than triple to $9.6 billion in 2012 from $2.7 billion in 2007, according to study from Kalorama Information Inc
[T]he first pilot project in the nation to assess whether the use of remote digital devices with data sent over the Internet to a doctor's office improved management of multiple chronic diseases - diabetes, heart disease and high blood pressure, also known as hypertension. 
Diabetics and hypertensive patients increased the number of days between appointments by 71 percent and 26 percent respectively ...
"One of the great promises of wireless (health) is making it a part of the patient's daily life, not an interruption to what they're doing every day," ...
From personal experience I believe the last sentence I quoted is among the most important in the article.  The entire process should be so smooth, so automated, so uncomplicated and unintrusive that the patient's life is uninterrupted and that the data is seamlessly collected and sent to the patient's caregiver.

Two other items to note.  The first is a brief discussion of the sensors connected to the patient's body.  They mention band-aid size electrodes.  I am not sure if these are the "digital plaster" that I've discussed in an earlier article.  http://medicalremoteprogramming.blogspot.com/2009/11/digital-plaster.html
Or something else.  I do not know, but it would be interesting to find out.  If I have any informational, I'll post it.  If you have any information, please enlighten us with a comment.

The second issue of note is the discussion in the article regarding payment, and who will do it.  Given the convoluted nature of our system of payments, this will be the most difficult issue to resolve, I believe.  It's ironic considering that remote monitoring saves money.   I think the technical issues will be minor in comparison.  I hope I am proved wrong.

Remote Monitoring/Programming and Diabetes Management

Diabetes management is a personal area of concern for me.  No, I'm not diabetic.  However, my late mother-in-law was.  She had Type II diabetes; however, she was not overweight.  She died of a sudden cardiac arrest that was a direct result of her diabetes.  Although she did a great deal to manage her diabetes, her insulin would swing widely.  Those wide swings damaged her heart muscles leading to a cardiac arrest.  I can't help but believe if remote monitoring had been available to her, that she should would be alive today.

In the past my primary topical area has been cardiac rhythm management.  I plan to broaden my focus. Diabetes management using remote monitoring and even remote programming will be a topical area of increasing focus in this blog.  In later weeks I plan to branch out into COPD.

For those of you who have domain expertise in diabetes management and COPD, I would appreciate your comments.  You can make your comments in the comment area of this blog or email them to me.  Whatever way you feel the most comfortable.

To get things started, I have three links that I would like share.  The first link is a blog article titled, "Finding patterns in diabetes treatment may be key for telemedicine."  The article is a brief discussion about a presentation by Dr. David Klonoff of Mills-Peninsula Health Center and UC San Francisco.  His focus was on Type I diabetics, however, I believe what he discussed has significant implications for Type II diabetics as well.  Dr. Klonoff's interest is technology "...for automatic measurement of blood glucose, automatic dose calculation, and automatic insulin delivery."  From the article ...
For this ideal scenario to develop, five technologies need to be solved, and Klonoff sees printed electronics being used in every one:
  • Self-monitoring of blood glucose
  • Continuous (and ultimately non-invasive) monitoring of blood glucose
  • Alternate routes for delivering insulin rather than needles, such as micro-needles. (Klonoff referred to work being done at UC Berkeley; I saw some demonstrated at the University College Cork/Ireland (PDF poster here) although using traditional semiconductors, not printed electronics.)
  • Artificial pancreas
  • Telemedicine
 In the quotation above, there are several links.  The one of greatest interest to me and to this forum, is the "non-invasive" link.  This will link you to an article titled, "The Search for Noninvasive Glucose Technology That Works: Where It Stands Now".


The article is a discussion of a need for a means for non-invasive monitoring of glucose levels.  The capability of having a non-invasive means of monitoring glucose levels would go a long ways towards supporting automatic, remote monitoring of glucose levels.  This could be an extension of the body area networks work (BANs).  So if anyone has any ideas in this area, apparently this is a wide open area for invention.

Finally, I want to provide a link to a brief report by the Whittier Institute of Diabetes.  The report is undated, but a brief review of the document's properties indicated that it was created in 2004.  It's not as recent as I would like, however, I believe that it's findings are relevant.  In summary, it showed that even relatively crude means for monitoring diabetes could lead to some positive outcomes at relatively low cost. 

 

Tuesday, March 23, 2010

Human Factors Issues in Remote Monitoring and Remote Programming

Series Overview and Background
 
Human factors issues related to remote monitoring and remote programming (remote patient care) will predominate in my postings over the next several months.  If I learned anything while working at St. Jude Medical, I learned the value of human factors engineering in relationship to remote monitoring systems.  Before I discuss what I learned, I want cover a few issues regarding remote patient care.

If you talk to a device clinic clinician, that person will have few difficulties in communicating to you the value of remote monitoring technology.  I heard stories from cardiologists that before remote monitoring technology was in place that device nurses would have to telephone device patients.  The emotional strain on the nurses was so great that device nurses would burn-out in two years.  

Remote monitoring provides a service to patients and their caregivers.  Most patients do not want to come to the device clinic and caregivers would rather that they did not.  Remote monitoring lengthens the time between clinic appointments.  Furthermore, remote monitoring can detect signs of potential problems much earlier than a visit to the clinic.  Remote monitoring can keep patients out of emergency rooms and can provide patients with a better quality of life.  Finally, remote monitoring can lower the cost of care while improving it.


Among the medical trail blazers, there is an interest in remote programming.  The ability to remotely make changes in the operation of a medical device could enable caregivers to be more proactive and provide patients with care where ever they are located, rather than just in the clinic.  This capability significantly lowers barriers and limitations on patients and their caregivers.  Patients can lead more free and independent lives and less tethered to clinic appointments.


Sounds wonderful, doesn't it?  Remote patient care technology does provide the underlayment, the enabling capability.  However, remote patient care system cannot be limited to the technology.  From my perspective working at St. Jude Medical, roles of caregivers and patients have been under valued, misunderstood or neglected in the development of systems to provide remote patient care.  I cannot speak for other medical device manufacturers.  I can say, because this is public information, that St. Jude Medical's remote monitoring system has come under fire because of issues related specifically to the performance and design of the user interface of their remote monitoring system.  

I am not singling-out St. Jude Medical regarding the design and implementation of their remote monitoring system.  St. Jude Medical implemented a beneficial and desired medical system.  However, it appears that they failed to understand two essential elements who are just as essential to the remote care system as the hardware and software.  Thus the current state of St. Jude Medical's remote monitoring system serves as a starting point for the articles that will follow this one.


My next two articles will focus on the new AAMI/ANSI standard HE75 due to be officially released in April 2010.  I cannot quote from the document at this time, however, I can say that HE75 is founded on the basic foundations of human factors. Thus, from that standpoint, there is nothing new about what is contained in HE75. I know several people on the HE75 committee and I can say that they are consumate human factors professionals, and dedicated to the profession. 


I can also say that should the FDA adopt this document (and all expectations are that the FDA will adopt it), the relatively lax approach that FDA approach to usability and human factors will come to an end.  There is a massive body of literature that documents the massive number of injuries and deaths from medical errors, and some of those medical errors can be traced back to poor device designs.  It may well be that the FDA will believe that it is time to "crack down" on poorly designed medical system user interfaces.  Furthermore, medical systems are becoming increasingly more powerful and complicated, thus the capability to do injury to patient will increase.  Thus, the need to insure that medical devices and their user interfaces will meet specific and unambiguous performance standards before being approved by the FDA.


I plan to focus specifically on medical devices related to remote patient care in this blog.  However, I may stray from time to time when there is something that seems particularly relevant or interesting.


I shall not discuss anything regarding future St. Jude Medical products or services in this blog.  However, I can discuss some of the issues I faced in general terms to illustrate points.  I suspect that the experiences I relate will resonate with others.


Next time: Human factors in the research and development of medical devices.

Development of BANS Expected to Accelerate

For those not in the "know," BANs is an acronym for Body Area Network.  It is a technology to capture and transmit body-related telemetry.  The National Institute of Standards and Technology (NIST) has granted the Center for Wireless Information Network Studies at Worcester Polytechnic Institute (WPI) Worcester, MA, $1.2 million over three years to advance BANs technology.  The research will focus on the propagation of radio waves around and through the human body. This could have real potential for the development of robust communications standards to enable medical devices to send and receive data and instructions over wireless networks.  This research is something to watch.

http://medicaldesign.com/engineering-prototyping/research-development/development-bans-expected-accelerate-032210/

Receiving a NIST grant is a significant achievement.  I was the Principal Investigator on a $2 million, two year grant to Rosetta-Wireless.  The NIST vetting process is arduous, but the grants generally fall into the seven figure range over two to three years.  I know that wireless data communication is an important area of interest to NIST particularly as it relates to medical applications, more specifically into the areas of wireless medical monitoring and remote programming.  I know that NIST has continued hopes for a medical application of the technology that my company, my research and development team created.

For those who have an interest in BANs, one of the technical problems is getting the data collected by BANs back to a location where medical professionals can review and evaluate it. And, if need be, make changes remotely in the operation of the implanted medical system (e. g., pacemaker, ICD, insulin pump, etc.).  If you review some of my earlier posts, you'll note that I have described methods to transport data and instructions over the commercial wireless network from and to a patient's implanted medical device. 

I shall continue to bring to light any further developments in BANs.